Some tips on splicing and dicing Pandas DataFrames


[1]:
import datetime
print('Last updated: {}'.format(datetime.date.today().strftime('%d %B, %Y')))
Last updated: 05 July, 2019

Outline:

Pandas DataFrames (two-dimensional) and Series (one-dimensional) data structures are extensively used in the brightwind library for the storage, transfer and display of data. A simple explaination is a Series is simply a single column of data which can have a index and a DataFrame is multiple columns of data with an index. Both are explained in more detail here:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

For an easier intro to them you could check out the below link. Needless to say, Pandas makes Python a powerful data analysis tool.

https://www.geeksforgeeks.org/python-pandas-dataframe/

This tutorial will give a basic introduction to using these data structures and outline how to:

  1. Seperate specific columns from DataFrames into new DataFrames and Series

  2. Select specific ranges from DataFrames and Series using the index

  3. Search for a specific entry in a DataFrame or Series


1: Selecting Columns

Data can be read into DataFrames easily from excel and csv files easily using the brightwind functions load_csv() and load_excel(). In the example below, data is read from the csv file demo_data into the DataFrame data.

[2]:
import brightwind as bw
data = bw.load_csv(r'C:\Users\Stephen\Documents\Analysis\demo_data.csv')
data.head(5)
[2]:
Spd80mN Spd80mS Spd60mN Spd60mS Spd40mN Spd40mS Spd80mNStd Spd80mSStd Spd60mNStd Spd60mSStd ... Dir78mSStd Dir58mS Dir58mSStd Dir38mS Dir38mSStd T2m RH2m P2m PrcpTot BattMin
Timestamp
2016-01-09 15:30:00 8.370 7.911 8.160 7.849 7.857 7.626 1.240 1.075 1.060 0.947 ... 6.100 110.1 6.009 112.2 5.724 0.711 100.0 935.0 0.0 12.94
2016-01-09 15:40:00 8.250 7.961 8.100 7.884 7.952 7.840 0.897 0.875 0.900 0.855 ... 5.114 110.9 4.702 109.8 5.628 0.630 100.0 935.0 0.0 12.95
2016-01-09 17:00:00 7.652 7.545 7.671 7.551 7.531 7.457 0.756 0.703 0.797 0.749 ... 4.172 113.1 3.447 111.8 4.016 1.126 100.0 934.0 0.0 12.75
2016-01-09 17:10:00 7.382 7.325 6.818 6.689 6.252 6.174 0.844 0.810 0.897 0.875 ... 4.680 118.8 5.107 115.6 5.189 0.954 100.0 934.0 0.0 12.71
2016-01-09 17:20:00 7.977 7.791 8.110 7.915 8.140 7.974 0.556 0.528 0.562 0.524 ... 3.123 115.9 2.960 113.6 3.540 0.863 100.0 934.0 0.0 12.69

5 rows × 29 columns

Once this data is loaded, the different columns and rows in the dataframe can be isolated for use in other calculations. To isolate the first column, Spd80mN, from the DataFrame data into the Series Wspd80mN the command is:

[3]:
Wspd80mN = data['Spd80mN']

The series Wspd80mN can then be easily passed into a function such as monthly_means():

[4]:
bw.monthly_means(Wspd80mN)
[4]:
../_images/tutorials_tips_on_splicing_dataframes_8_0.png

Similarly, you can select a few columns at the same time.

[5]:
bw.monthly_means(data[['T2m', 'BattMin']])
[5]:
../_images/tutorials_tips_on_splicing_dataframes_10_0.png

Another way to select a single column is to use the data.Spd80mN. This only works if you column names have no spaces in them.

[6]:
bw.monthly_means(data.Spd80mN)
[6]:
../_images/tutorials_tips_on_splicing_dataframes_12_0.png

Step 2: Selecting Ranges

Ranges, or rows, from within a Series or DataFrame can be seleced. The brightwind library always asigns the index of the DataFrame to be a datetime data type making it much easier to work with the DataFrame for wind analysis purposes. For example, to select data points between two dates for the data DataFrame we loaded in:

[7]:
data['2017-01-01':'2017-02-01']
[7]:
Spd80mN Spd80mS Spd60mN Spd60mS Spd40mN Spd40mS Spd80mNStd Spd80mSStd Spd60mNStd Spd60mSStd ... Dir78mSStd Dir58mS Dir58mSStd Dir38mS Dir38mSStd T2m RH2m P2m PrcpTot BattMin
Timestamp
2017-01-01 00:00:00 5.876 5.858 5.747 5.744 5.605 5.558 1.160 1.109 1.186 1.158 ... 7.025 275.2 0.0 324.900 6.451 3.077 99.7 966.0 0.0 12.71
2017-01-01 00:10:00 5.911 5.898 5.539 5.621 5.324 5.345 1.114 1.079 1.005 0.977 ... 7.498 275.2 0.0 319.600 9.160 2.915 99.8 966.0 0.0 12.71
2017-01-01 00:20:00 7.004 6.967 6.741 6.797 6.645 6.634 1.038 0.998 1.042 1.033 ... 6.283 275.2 0.0 316.500 7.228 2.865 99.8 966.0 0.0 12.71
2017-01-01 00:30:00 7.079 7.067 6.832 6.881 6.792 6.801 0.705 0.667 0.707 0.665 ... 4.661 275.2 0.0 319.100 5.279 2.693 97.8 966.0 0.0 12.71
2017-01-01 00:40:00 6.796 6.765 6.684 6.742 6.658 6.685 0.794 0.785 0.812 0.792 ... 5.036 275.2 0.0 317.300 6.070 2.471 98.4 967.0 0.0 12.71
2017-01-01 00:50:00 8.380 8.350 8.070 8.170 7.861 7.915 0.999 0.949 0.920 0.871 ... 5.734 275.2 0.0 314.400 5.881 2.329 99.1 966.0 0.0 12.70
2017-01-01 01:00:00 8.910 8.870 8.310 8.400 7.992 7.991 0.751 0.717 0.809 0.775 ... 3.719 275.2 0.0 315.900 4.887 2.137 98.5 966.0 0.0 12.70
2017-01-01 01:10:00 8.490 8.460 8.010 8.050 7.507 7.526 0.720 0.665 0.779 0.756 ... 4.544 275.2 0.0 323.500 5.816 2.006 99.0 966.0 0.0 12.70
2017-01-01 01:20:00 7.116 7.096 6.755 6.739 6.410 6.354 0.719 0.678 0.741 0.700 ... 5.676 275.2 0.0 326.100 5.782 1.783 98.9 966.0 0.0 12.70
2017-01-01 01:30:00 8.060 8.070 7.415 7.446 6.812 6.814 0.867 0.835 0.912 0.827 ... 5.352 275.2 0.0 323.600 6.129 1.742 99.6 966.0 0.0 12.70
2017-01-01 01:40:00 9.150 9.170 8.480 8.300 7.883 7.721 0.738 0.685 0.789 0.750 ... 5.377 275.2 0.0 330.600 6.721 1.763 99.8 966.0 0.1 12.70
2017-01-01 01:50:00 7.837 7.820 7.132 6.473 6.608 6.100 0.837 0.834 1.013 1.140 ... 14.100 275.2 0.0 339.700 6.033 1.783 99.3 966.0 0.0 12.69
2017-01-01 02:00:00 6.234 6.149 5.446 4.847 4.863 4.624 1.133 1.067 0.962 0.795 ... 20.510 275.2 0.0 2.726 17.940 1.773 99.3 966.0 0.0 12.69
2017-01-01 02:10:00 5.896 5.872 5.318 4.967 4.892 4.778 0.573 0.528 0.640 0.635 ... 14.600 275.2 0.0 3.750 15.530 1.641 100.0 966.0 0.0 12.69
2017-01-01 02:20:00 4.897 4.877 4.583 4.469 4.272 4.250 0.759 0.696 0.731 0.676 ... 14.260 275.2 0.0 15.830 17.620 1.510 100.0 966.0 0.0 12.69
2017-01-01 02:30:00 4.830 4.859 4.135 4.106 3.775 3.751 0.797 0.739 0.871 0.831 ... 6.807 275.2 0.0 45.140 8.820 1.541 100.0 967.0 0.0 12.69
2017-01-01 02:40:00 4.728 4.716 4.353 4.322 4.006 4.001 0.510 0.433 0.470 0.396 ... 7.454 275.2 0.0 36.230 7.463 1.551 100.0 967.0 0.0 12.69
2017-01-01 02:50:00 4.207 4.221 3.646 3.563 3.105 3.008 1.211 1.228 1.162 1.235 ... 12.380 275.2 0.0 9.620 20.540 1.398 100.0 967.0 0.0 12.69
2017-01-01 03:00:00 4.315 4.267 3.923 3.754 3.590 3.515 0.569 0.511 0.529 0.516 ... 11.910 275.2 0.0 5.029 10.810 1.470 100.0 967.0 0.0 12.69
2017-01-01 03:10:00 5.976 5.952 5.513 5.359 4.838 4.746 0.717 0.667 0.839 0.935 ... 9.510 275.2 0.0 6.449 14.240 1.530 100.0 967.0 0.0 12.68
2017-01-01 03:20:00 6.539 6.550 5.985 5.969 5.471 5.467 0.803 0.761 0.745 0.741 ... 4.772 275.2 0.0 10.840 11.510 1.439 100.0 967.0 0.0 12.68
2017-01-01 03:30:00 7.523 7.566 7.091 7.106 6.509 6.521 0.549 0.484 0.576 0.516 ... 2.797 275.2 0.0 12.380 4.930 1.500 100.0 967.0 0.0 12.68
2017-01-01 03:40:00 7.904 7.953 7.640 7.637 7.220 7.215 0.497 0.428 0.656 0.616 ... 2.781 275.2 0.0 18.510 5.389 1.570 100.0 967.0 0.0 12.67
2017-01-01 03:50:00 7.621 7.626 7.261 7.189 6.824 6.801 0.683 0.637 0.750 0.725 ... 9.960 275.2 0.0 14.650 8.850 1.520 99.9 967.0 0.0 12.67
2017-01-01 04:00:00 7.791 7.850 7.277 7.276 6.593 6.618 1.116 1.056 1.153 1.108 ... 6.700 275.2 0.0 11.620 11.890 1.379 100.0 967.0 0.0 12.67
2017-01-01 04:10:00 8.190 8.230 7.611 7.636 7.090 7.111 1.079 1.003 1.251 1.249 ... 8.580 275.2 0.0 13.020 11.540 1.288 100.0 967.0 0.0 12.67
2017-01-01 04:20:00 8.200 8.240 7.179 7.210 6.591 6.635 1.491 1.428 1.501 1.466 ... 8.820 275.2 0.0 16.440 11.740 1.136 98.5 967.0 0.0 12.67
2017-01-01 04:30:00 8.290 8.370 7.685 7.707 6.911 6.920 0.996 0.948 1.137 1.117 ... 9.960 275.2 0.0 15.710 14.230 1.045 97.5 968.0 0.0 12.67
2017-01-01 04:40:00 8.230 8.290 7.376 7.299 6.835 6.849 1.071 1.033 1.231 1.126 ... 12.660 275.2 0.0 10.550 13.360 0.792 96.0 968.0 0.0 12.67
2017-01-01 04:50:00 9.600 9.660 8.890 8.850 8.170 8.190 1.075 1.040 1.033 1.094 ... 6.267 275.2 0.0 8.210 15.310 0.468 95.4 968.0 0.0 12.67
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2017-02-01 19:00:00 9.980 9.970 7.821 8.970 7.269 8.350 1.556 1.471 1.402 1.335 ... 5.712 275.2 0.0 170.500 6.764 4.370 98.8 947.0 0.0 12.98
2017-02-01 19:10:00 7.264 7.333 5.912 6.739 5.534 6.465 1.459 1.326 1.319 1.074 ... 8.560 275.2 0.0 170.900 7.869 4.512 97.3 946.0 0.0 12.98
2017-02-01 19:20:00 8.210 8.270 6.920 7.266 6.077 6.393 1.875 1.738 1.835 1.572 ... 10.950 275.2 0.0 160.700 11.660 4.814 96.8 947.0 0.0 12.97
2017-02-01 19:30:00 11.040 10.980 10.010 9.960 9.180 9.180 1.520 1.435 1.551 1.421 ... 5.745 275.2 0.0 156.000 6.775 5.138 95.4 946.0 0.0 12.96
2017-02-01 19:40:00 12.240 12.100 11.570 11.390 11.040 10.870 1.440 1.362 1.444 1.332 ... 5.474 275.2 0.0 153.500 6.161 5.562 95.5 946.0 0.0 12.96
2017-02-01 19:50:00 13.340 13.250 12.650 12.490 11.990 11.830 1.632 1.571 1.846 1.659 ... 5.866 275.2 0.0 152.800 6.037 5.583 94.3 946.0 0.0 12.95
2017-02-01 20:00:00 14.150 14.070 13.570 13.280 12.890 12.670 1.196 1.103 1.161 1.076 ... 5.031 275.2 0.0 150.800 5.244 5.623 94.8 945.0 0.0 12.94
2017-02-01 20:10:00 15.540 15.460 14.930 14.700 14.450 14.280 1.321 1.245 1.497 1.374 ... 4.250 275.2 0.0 148.200 5.148 5.461 95.1 945.0 0.0 12.93
2017-02-01 20:20:00 14.870 14.860 14.280 14.060 13.850 13.650 1.292 1.204 1.556 1.457 ... 3.911 275.2 0.0 146.800 4.782 5.421 97.1 945.0 0.0 12.93
2017-02-01 20:30:00 15.220 15.220 14.920 14.750 14.340 14.190 1.244 1.174 1.198 1.143 ... 4.193 275.2 0.0 146.100 4.854 5.502 97.8 945.0 0.0 12.93
2017-02-01 20:40:00 14.510 14.500 14.230 14.030 13.760 13.600 1.362 1.273 1.459 1.373 ... 4.882 275.2 0.0 148.500 4.689 5.542 98.3 945.0 0.0 12.92
2017-02-01 20:50:00 13.570 13.510 13.110 12.910 12.690 12.550 1.465 1.380 1.592 1.458 ... 5.153 275.2 0.0 152.800 5.701 5.461 99.1 945.0 0.1 12.92
2017-02-01 21:00:00 13.200 13.120 12.100 12.080 11.540 11.540 1.683 1.569 1.678 1.478 ... 6.637 275.2 0.0 155.700 6.759 5.592 100.0 945.0 0.1 12.91
2017-02-01 21:10:00 12.780 12.840 11.880 11.990 11.040 11.270 2.181 2.064 2.074 1.846 ... 6.751 275.2 0.0 156.200 8.080 5.572 100.0 945.0 0.1 12.91
2017-02-01 21:20:00 13.230 13.190 13.010 12.900 12.680 12.670 1.995 1.907 1.828 1.734 ... 7.287 275.2 0.0 153.200 6.439 5.602 100.0 945.0 0.1 12.91
2017-02-01 21:30:00 12.160 12.210 11.190 11.450 10.670 10.940 2.316 2.182 2.726 2.271 ... 8.080 275.2 0.0 158.100 8.290 5.592 100.0 945.0 0.2 12.91
2017-02-01 21:40:00 11.400 11.690 9.840 10.690 9.060 9.860 1.785 1.759 1.655 1.527 ... 8.090 275.2 0.0 163.600 9.410 5.592 100.0 944.0 0.2 12.90
2017-02-01 21:50:00 11.530 11.770 10.270 10.910 9.930 10.460 2.281 2.186 2.116 2.102 ... 9.460 275.2 0.0 159.600 11.100 5.673 100.0 945.0 0.2 12.90
2017-02-01 22:00:00 11.940 12.190 10.120 11.330 9.520 11.000 2.337 2.232 2.613 2.416 ... 8.220 275.2 0.0 168.200 7.792 5.531 100.0 944.0 0.2 12.89
2017-02-01 22:10:00 11.850 12.060 9.970 11.290 9.230 10.570 1.937 1.833 2.190 1.828 ... 8.860 275.2 0.0 170.700 8.850 5.421 100.0 944.0 0.1 12.89
2017-02-01 22:20:00 10.240 10.390 8.220 9.700 7.887 9.290 1.740 1.657 1.474 1.462 ... 8.550 275.2 0.0 176.200 8.810 5.279 100.0 944.0 0.0 12.89
2017-02-01 22:30:00 11.000 11.050 8.270 10.050 8.110 9.410 1.421 1.318 1.443 1.579 ... 6.332 275.2 0.0 181.800 7.599 5.309 100.0 944.0 0.0 12.89
2017-02-01 22:40:00 11.900 12.000 9.100 11.060 8.720 10.270 1.561 1.454 1.584 1.438 ... 6.540 275.2 0.0 175.800 8.180 5.411 100.0 944.0 0.0 12.89
2017-02-01 22:50:00 11.160 11.250 8.280 10.310 7.959 9.430 2.197 2.084 1.699 1.934 ... 6.301 275.2 0.0 176.700 8.300 5.481 100.0 944.0 0.0 12.88
2017-02-01 23:00:00 10.580 10.760 8.310 9.800 8.080 9.270 1.974 1.819 1.733 1.689 ... 8.480 275.2 0.0 172.100 8.700 5.552 100.0 944.0 0.1 12.88
2017-02-01 23:10:00 11.190 11.410 8.710 10.480 8.240 9.790 1.821 1.691 1.608 1.472 ... 7.089 275.2 0.0 172.200 6.555 5.491 100.0 944.0 0.0 12.88
2017-02-01 23:20:00 11.580 11.750 9.150 10.820 8.840 10.120 2.490 2.315 2.191 2.361 ... 7.986 275.2 0.0 180.000 8.520 5.542 100.0 944.0 0.1 12.88
2017-02-01 23:30:00 14.320 14.490 10.770 13.280 10.430 12.200 2.221 1.981 1.867 1.856 ... 6.347 275.2 0.0 177.700 7.901 5.602 100.0 944.0 0.0 12.88
2017-02-01 23:40:00 12.870 12.860 10.650 12.010 10.250 11.320 2.060 1.905 1.994 1.764 ... 7.929 275.2 0.0 185.400 9.620 5.643 100.0 944.0 0.0 12.88
2017-02-01 23:50:00 13.330 13.440 10.920 12.630 10.640 11.770 2.425 2.258 2.454 2.119 ... 7.456 275.2 0.0 183.100 8.470 5.643 100.0 944.0 0.2 12.88

4608 rows × 29 columns

To select all the data points from a specific date, i.e. 2017-01-01, to the end of the series you can leave the area after the ‘:’ empty.

[8]:
data['2017-01-01':]
[8]:
Spd80mN Spd80mS Spd60mN Spd60mS Spd40mN Spd40mS Spd80mNStd Spd80mSStd Spd60mNStd Spd60mSStd ... Dir78mSStd Dir58mS Dir58mSStd Dir38mS Dir38mSStd T2m RH2m P2m PrcpTot BattMin
Timestamp
2017-01-01 00:00:00 5.876 5.858 5.747 5.744 5.605 5.558 1.160 1.109 1.186 1.158 ... 7.025 275.2 0.0 324.900 6.451 3.077 99.7 966.0 0.0 12.71
2017-01-01 00:10:00 5.911 5.898 5.539 5.621 5.324 5.345 1.114 1.079 1.005 0.977 ... 7.498 275.2 0.0 319.600 9.160 2.915 99.8 966.0 0.0 12.71
2017-01-01 00:20:00 7.004 6.967 6.741 6.797 6.645 6.634 1.038 0.998 1.042 1.033 ... 6.283 275.2 0.0 316.500 7.228 2.865 99.8 966.0 0.0 12.71
2017-01-01 00:30:00 7.079 7.067 6.832 6.881 6.792 6.801 0.705 0.667 0.707 0.665 ... 4.661 275.2 0.0 319.100 5.279 2.693 97.8 966.0 0.0 12.71
2017-01-01 00:40:00 6.796 6.765 6.684 6.742 6.658 6.685 0.794 0.785 0.812 0.792 ... 5.036 275.2 0.0 317.300 6.070 2.471 98.4 967.0 0.0 12.71
2017-01-01 00:50:00 8.380 8.350 8.070 8.170 7.861 7.915 0.999 0.949 0.920 0.871 ... 5.734 275.2 0.0 314.400 5.881 2.329 99.1 966.0 0.0 12.70
2017-01-01 01:00:00 8.910 8.870 8.310 8.400 7.992 7.991 0.751 0.717 0.809 0.775 ... 3.719 275.2 0.0 315.900 4.887 2.137 98.5 966.0 0.0 12.70
2017-01-01 01:10:00 8.490 8.460 8.010 8.050 7.507 7.526 0.720 0.665 0.779 0.756 ... 4.544 275.2 0.0 323.500 5.816 2.006 99.0 966.0 0.0 12.70
2017-01-01 01:20:00 7.116 7.096 6.755 6.739 6.410 6.354 0.719 0.678 0.741 0.700 ... 5.676 275.2 0.0 326.100 5.782 1.783 98.9 966.0 0.0 12.70
2017-01-01 01:30:00 8.060 8.070 7.415 7.446 6.812 6.814 0.867 0.835 0.912 0.827 ... 5.352 275.2 0.0 323.600 6.129 1.742 99.6 966.0 0.0 12.70
2017-01-01 01:40:00 9.150 9.170 8.480 8.300 7.883 7.721 0.738 0.685 0.789 0.750 ... 5.377 275.2 0.0 330.600 6.721 1.763 99.8 966.0 0.1 12.70
2017-01-01 01:50:00 7.837 7.820 7.132 6.473 6.608 6.100 0.837 0.834 1.013 1.140 ... 14.100 275.2 0.0 339.700 6.033 1.783 99.3 966.0 0.0 12.69
2017-01-01 02:00:00 6.234 6.149 5.446 4.847 4.863 4.624 1.133 1.067 0.962 0.795 ... 20.510 275.2 0.0 2.726 17.940 1.773 99.3 966.0 0.0 12.69
2017-01-01 02:10:00 5.896 5.872 5.318 4.967 4.892 4.778 0.573 0.528 0.640 0.635 ... 14.600 275.2 0.0 3.750 15.530 1.641 100.0 966.0 0.0 12.69
2017-01-01 02:20:00 4.897 4.877 4.583 4.469 4.272 4.250 0.759 0.696 0.731 0.676 ... 14.260 275.2 0.0 15.830 17.620 1.510 100.0 966.0 0.0 12.69
2017-01-01 02:30:00 4.830 4.859 4.135 4.106 3.775 3.751 0.797 0.739 0.871 0.831 ... 6.807 275.2 0.0 45.140 8.820 1.541 100.0 967.0 0.0 12.69
2017-01-01 02:40:00 4.728 4.716 4.353 4.322 4.006 4.001 0.510 0.433 0.470 0.396 ... 7.454 275.2 0.0 36.230 7.463 1.551 100.0 967.0 0.0 12.69
2017-01-01 02:50:00 4.207 4.221 3.646 3.563 3.105 3.008 1.211 1.228 1.162 1.235 ... 12.380 275.2 0.0 9.620 20.540 1.398 100.0 967.0 0.0 12.69
2017-01-01 03:00:00 4.315 4.267 3.923 3.754 3.590 3.515 0.569 0.511 0.529 0.516 ... 11.910 275.2 0.0 5.029 10.810 1.470 100.0 967.0 0.0 12.69
2017-01-01 03:10:00 5.976 5.952 5.513 5.359 4.838 4.746 0.717 0.667 0.839 0.935 ... 9.510 275.2 0.0 6.449 14.240 1.530 100.0 967.0 0.0 12.68
2017-01-01 03:20:00 6.539 6.550 5.985 5.969 5.471 5.467 0.803 0.761 0.745 0.741 ... 4.772 275.2 0.0 10.840 11.510 1.439 100.0 967.0 0.0 12.68
2017-01-01 03:30:00 7.523 7.566 7.091 7.106 6.509 6.521 0.549 0.484 0.576 0.516 ... 2.797 275.2 0.0 12.380 4.930 1.500 100.0 967.0 0.0 12.68
2017-01-01 03:40:00 7.904 7.953 7.640 7.637 7.220 7.215 0.497 0.428 0.656 0.616 ... 2.781 275.2 0.0 18.510 5.389 1.570 100.0 967.0 0.0 12.67
2017-01-01 03:50:00 7.621 7.626 7.261 7.189 6.824 6.801 0.683 0.637 0.750 0.725 ... 9.960 275.2 0.0 14.650 8.850 1.520 99.9 967.0 0.0 12.67
2017-01-01 04:00:00 7.791 7.850 7.277 7.276 6.593 6.618 1.116 1.056 1.153 1.108 ... 6.700 275.2 0.0 11.620 11.890 1.379 100.0 967.0 0.0 12.67
2017-01-01 04:10:00 8.190 8.230 7.611 7.636 7.090 7.111 1.079 1.003 1.251 1.249 ... 8.580 275.2 0.0 13.020 11.540 1.288 100.0 967.0 0.0 12.67
2017-01-01 04:20:00 8.200 8.240 7.179 7.210 6.591 6.635 1.491 1.428 1.501 1.466 ... 8.820 275.2 0.0 16.440 11.740 1.136 98.5 967.0 0.0 12.67
2017-01-01 04:30:00 8.290 8.370 7.685 7.707 6.911 6.920 0.996 0.948 1.137 1.117 ... 9.960 275.2 0.0 15.710 14.230 1.045 97.5 968.0 0.0 12.67
2017-01-01 04:40:00 8.230 8.290 7.376 7.299 6.835 6.849 1.071 1.033 1.231 1.126 ... 12.660 275.2 0.0 10.550 13.360 0.792 96.0 968.0 0.0 12.67
2017-01-01 04:50:00 9.600 9.660 8.890 8.850 8.170 8.190 1.075 1.040 1.033 1.094 ... 6.267 275.2 0.0 8.210 15.310 0.468 95.4 968.0 0.0 12.67
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2017-11-23 06:00:00 10.620 0.000 10.420 10.370 10.110 10.030 0.857 0.000 0.803 0.752 ... 0.000 275.2 0.0 257.200 4.303 0.589 100.0 940.0 0.1 12.71
2017-11-23 06:10:00 10.720 0.000 10.670 10.600 10.470 10.380 1.027 0.000 0.938 0.919 ... 0.000 275.2 0.0 258.700 4.351 0.701 100.0 940.0 0.0 12.71
2017-11-23 06:20:00 10.940 0.000 10.650 10.600 10.290 10.210 0.708 0.000 0.823 0.778 ... 0.000 275.2 0.0 257.700 3.923 0.761 99.5 940.0 0.0 12.71
2017-11-23 06:30:00 10.270 0.000 10.130 9.960 9.910 9.790 0.800 0.000 0.865 0.808 ... 0.000 275.2 0.0 251.600 3.722 0.792 98.0 940.0 0.0 12.71
2017-11-23 06:40:00 8.180 0.000 7.985 7.811 7.649 7.519 1.167 0.000 1.239 1.199 ... 0.000 275.2 0.0 242.800 4.858 0.518 98.2 941.0 0.0 12.71
2017-11-23 06:50:00 8.870 0.000 8.570 8.330 8.020 7.873 0.676 0.000 0.582 0.534 ... 0.000 275.2 0.0 232.900 3.426 0.782 99.9 941.0 0.0 12.71
2017-11-23 07:00:00 9.300 0.000 8.950 8.670 8.590 8.400 0.933 0.000 0.994 0.937 ... 0.000 275.2 0.0 229.300 4.575 0.761 99.5 941.0 0.0 12.71
2017-11-23 07:10:00 8.130 0.000 7.863 7.592 7.283 7.094 0.823 0.000 0.837 0.794 ... 0.000 275.2 0.0 225.100 4.478 0.721 99.9 941.0 0.0 12.67
2017-11-23 07:20:00 8.910 0.000 8.500 8.250 8.020 7.864 1.063 0.000 0.977 0.929 ... 0.000 275.2 0.0 226.700 5.236 0.751 100.0 941.0 0.0 12.66
2017-11-23 07:30:00 9.610 0.000 9.260 8.980 8.630 8.470 0.942 0.000 0.923 0.860 ... 0.000 275.2 0.0 228.100 5.127 0.670 100.0 941.0 0.0 12.66
2017-11-23 07:40:00 10.900 0.000 10.310 10.050 9.680 9.490 1.268 0.000 1.170 1.111 ... 0.000 275.2 0.0 232.700 5.563 0.570 100.0 941.0 0.0 12.67
2017-11-23 07:50:00 11.560 0.000 11.080 10.790 10.400 10.190 1.022 0.000 1.114 1.067 ... 0.000 275.2 0.0 238.600 4.363 0.751 100.0 941.0 0.0 12.70
2017-11-23 08:00:00 11.730 0.000 11.290 11.030 10.690 10.490 0.842 0.000 0.834 0.759 ... 0.000 275.2 0.0 237.400 3.395 0.771 100.0 941.0 0.0 12.70
2017-11-23 08:10:00 11.700 0.000 11.420 11.130 11.030 10.830 0.764 0.000 0.727 0.673 ... 0.000 275.2 0.0 235.900 3.391 0.863 99.7 941.0 0.0 12.66
2017-11-23 08:20:00 12.270 0.000 12.020 11.760 11.510 11.330 0.774 0.000 0.800 0.755 ... 0.000 275.2 0.0 237.000 3.657 0.842 99.5 941.0 0.0 12.66
2017-11-23 08:30:00 11.510 0.000 11.260 10.990 10.740 10.530 0.956 0.000 0.903 0.857 ... 0.000 275.2 0.0 234.600 3.988 0.701 99.3 942.0 0.0 12.65
2017-11-23 08:40:00 11.380 0.000 10.850 10.520 10.310 10.090 0.962 0.000 0.867 0.840 ... 0.000 275.2 0.0 235.000 4.448 0.751 99.7 942.0 0.0 12.68
2017-11-23 08:50:00 10.420 0.000 10.090 9.810 9.590 9.380 1.034 0.000 1.141 1.111 ... 0.000 275.2 0.0 223.700 7.394 0.680 99.7 942.0 0.0 12.69
2017-11-23 09:00:00 9.050 0.000 8.530 8.270 7.696 7.503 0.668 0.000 0.763 0.681 ... 0.000 275.2 0.0 211.600 7.172 0.812 100.0 942.0 0.0 12.70
2017-11-23 09:10:00 7.484 0.000 7.231 6.956 6.596 6.404 1.009 0.000 0.868 0.811 ... 0.000 275.2 0.0 213.000 7.851 0.771 98.4 942.0 0.0 12.69
2017-11-23 09:20:00 7.228 0.000 6.903 6.691 6.273 6.089 0.756 0.000 0.841 0.753 ... 0.000 275.2 0.0 209.100 7.654 0.549 99.0 943.0 0.0 12.70
2017-11-23 09:30:00 7.740 0.000 7.359 7.147 6.889 6.775 0.634 0.000 0.618 0.586 ... 0.000 275.2 0.0 221.000 6.078 0.711 99.6 943.0 0.0 12.52
2017-11-23 09:40:00 8.380 0.000 7.900 7.675 7.190 7.068 0.822 0.000 0.881 0.798 ... 0.000 275.2 0.0 221.900 4.969 0.651 98.8 943.0 0.0 12.73
2017-11-23 09:50:00 9.870 0.000 9.250 8.970 8.450 8.250 0.954 0.000 0.878 0.805 ... 0.000 275.2 0.0 220.200 5.269 0.873 99.8 943.0 0.0 12.89
2017-11-23 10:00:00 9.800 0.000 9.340 9.070 8.630 8.450 1.170 0.000 1.136 1.076 ... 0.000 275.2 0.0 221.900 5.125 0.731 98.6 943.0 0.0 12.94
2017-11-23 10:10:00 10.480 0.000 10.190 9.890 9.590 9.420 0.720 0.000 0.733 0.668 ... 0.000 275.2 0.0 222.200 4.111 0.943 99.7 943.0 0.0 13.02
2017-11-23 10:20:00 9.390 0.000 9.120 8.850 8.520 8.340 0.659 0.000 0.734 0.651 ... 0.000 275.2 0.0 218.400 4.817 0.792 98.6 943.0 0.0 13.69
2017-11-23 10:30:00 9.140 0.000 8.700 8.450 8.030 7.875 0.689 0.000 0.821 0.732 ... 0.000 275.2 0.0 216.000 5.784 0.802 100.0 943.0 0.0 13.86
2017-11-23 10:40:00 7.927 0.000 7.383 7.159 6.811 6.668 0.817 0.000 0.769 0.692 ... 0.000 275.2 0.0 219.500 5.051 0.883 100.0 943.0 0.0 13.80
2017-11-23 10:50:00 7.120 0.000 6.617 6.404 5.865 5.749 0.537 0.000 0.534 0.450 ... 0.000 275.2 0.0 222.400 4.902 0.802 100.0 944.0 0.0 13.71

47010 rows × 29 columns

To select all the data points from the start to a specific date, i.e. 2017-01-01, you can leave the area before the ‘:’ empty.

[9]:
data[:'2017-01-01']
[9]:
Spd80mN Spd80mS Spd60mN Spd60mS Spd40mN Spd40mS Spd80mNStd Spd80mSStd Spd60mNStd Spd60mSStd ... Dir78mSStd Dir58mS Dir58mSStd Dir38mS Dir38mSStd T2m RH2m P2m PrcpTot BattMin
Timestamp
2016-01-09 15:30:00 8.370 7.911 8.160 7.849 7.857 7.626 1.240 1.075 1.060 0.947 ... 6.100 110.10 6.009 112.200 5.724 0.711 100.0 935.0 0.0 12.94
2016-01-09 15:40:00 8.250 7.961 8.100 7.884 7.952 7.840 0.897 0.875 0.900 0.855 ... 5.114 110.90 4.702 109.800 5.628 0.630 100.0 935.0 0.0 12.95
2016-01-09 17:00:00 7.652 7.545 7.671 7.551 7.531 7.457 0.756 0.703 0.797 0.749 ... 4.172 113.10 3.447 111.800 4.016 1.126 100.0 934.0 0.0 12.75
2016-01-09 17:10:00 7.382 7.325 6.818 6.689 6.252 6.174 0.844 0.810 0.897 0.875 ... 4.680 118.80 5.107 115.600 5.189 0.954 100.0 934.0 0.0 12.71
2016-01-09 17:20:00 7.977 7.791 8.110 7.915 8.140 7.974 0.556 0.528 0.562 0.524 ... 3.123 115.90 2.960 113.600 3.540 0.863 100.0 934.0 0.0 12.69
2016-01-09 17:30:00 8.340 8.160 8.370 8.170 8.330 8.180 0.676 0.607 0.756 0.708 ... 3.260 117.20 3.600 117.400 4.526 0.731 100.0 934.0 0.0 12.67
2016-01-09 17:40:00 8.130 7.929 8.090 7.895 7.972 7.788 0.557 0.507 0.534 0.498 ... 3.677 115.90 3.371 115.900 3.515 0.852 100.0 933.0 0.0 12.68
2016-01-09 17:50:00 7.480 7.283 7.706 7.486 7.649 7.481 0.588 0.526 0.590 0.529 ... 3.500 119.90 3.265 118.900 3.322 0.771 100.0 933.0 0.0 12.67
2016-01-09 18:00:00 7.554 7.452 7.484 7.359 7.578 7.456 0.734 0.681 0.631 0.573 ... 3.061 113.90 2.663 111.400 2.789 0.913 100.0 933.0 0.0 12.65
2016-01-09 18:10:00 8.220 8.070 8.080 7.888 7.791 7.639 0.743 0.724 0.800 0.757 ... 3.427 115.10 4.055 113.800 4.834 0.832 100.0 933.0 0.0 12.62
2016-01-09 18:20:00 9.420 9.270 9.660 9.470 9.570 9.450 0.482 0.438 0.566 0.522 ... 2.431 119.50 2.454 117.400 3.017 0.549 100.0 933.0 0.0 12.61
2016-01-09 18:30:00 9.910 9.810 9.610 9.480 8.940 8.840 0.568 0.513 0.698 0.648 ... 3.272 114.90 3.271 113.200 4.454 0.529 100.0 933.0 0.0 12.60
2016-01-09 18:40:00 10.390 10.340 10.260 10.110 9.840 9.760 0.683 0.640 0.710 0.696 ... 4.405 110.90 4.308 109.300 4.776 0.589 100.0 933.0 0.0 12.60
2016-01-09 18:50:00 10.360 10.320 10.320 10.230 9.830 9.820 0.840 0.780 0.857 0.841 ... 3.509 108.30 3.642 106.000 4.478 0.448 100.0 932.0 0.0 12.61
2016-01-09 19:00:00 9.950 9.880 10.050 9.970 9.910 9.870 0.561 0.469 0.639 0.547 ... 3.601 102.30 3.085 100.700 3.954 0.701 100.0 932.0 0.0 12.60
2016-01-09 19:10:00 9.620 9.600 9.590 9.550 9.240 9.260 0.767 0.666 0.847 0.732 ... 4.701 100.80 4.184 99.900 4.012 0.691 100.0 932.0 0.0 12.59
2016-01-09 19:20:00 9.590 9.600 9.510 9.460 9.270 9.270 0.615 0.571 0.795 0.760 ... 5.744 109.30 5.838 105.200 5.478 0.711 100.0 932.0 0.0 12.58
2016-01-09 19:30:00 10.520 10.520 10.520 10.440 10.510 10.490 0.608 0.571 0.501 0.477 ... 2.017 122.00 2.219 118.600 2.905 0.823 100.0 932.0 0.0 12.58
2016-01-09 19:40:00 8.970 8.950 9.190 9.100 9.260 9.190 0.691 0.617 0.705 0.659 ... 3.884 123.10 4.036 119.200 3.911 0.913 100.0 931.0 0.0 12.57
2016-01-09 19:50:00 7.334 7.339 7.212 7.151 6.995 6.964 1.286 1.283 1.470 1.423 ... 13.060 113.80 12.850 112.800 9.380 1.156 100.0 931.0 0.0 12.57
2016-01-09 20:00:00 5.310 5.445 4.788 4.901 4.093 4.190 1.202 1.190 1.259 1.226 ... 16.890 92.30 16.320 82.100 20.130 1.317 100.0 931.0 0.0 12.56
2016-01-09 20:10:00 4.052 4.044 3.956 3.921 3.572 3.500 0.881 0.868 0.802 0.787 ... 16.450 106.00 18.110 98.800 18.040 1.389 100.0 931.0 0.0 12.56
2016-01-09 20:20:00 3.632 3.519 3.653 3.584 3.594 3.524 0.816 0.787 0.658 0.615 ... 11.660 95.00 10.780 90.900 10.660 1.288 100.0 931.0 0.0 12.55
2016-01-09 20:30:00 6.868 6.797 6.667 6.566 6.363 6.277 1.297 1.313 1.383 1.371 ... 7.568 112.40 5.917 111.900 6.342 1.449 100.0 931.0 0.0 12.54
2016-01-09 20:40:00 3.496 3.462 4.098 4.110 4.252 4.318 1.363 1.367 1.616 1.593 ... 13.770 104.30 12.860 106.200 12.810 1.317 100.0 931.0 0.0 12.54
2016-01-09 20:50:00 2.390 2.394 2.033 2.000 1.402 1.347 0.774 0.706 0.725 0.682 ... 21.640 98.70 33.320 78.950 39.480 0.913 100.0 931.0 0.0 12.54
2016-01-09 21:00:00 3.002 3.042 2.509 2.521 2.252 2.156 1.313 1.265 1.237 1.285 ... 22.610 73.82 25.350 56.030 33.450 1.338 100.0 931.0 0.0 12.53
2016-01-09 21:10:00 3.489 3.448 3.061 3.031 2.874 2.851 0.821 0.793 0.632 0.575 ... 10.750 74.83 11.530 66.910 12.570 1.176 100.0 930.0 0.0 12.53
2016-01-09 21:20:00 4.204 4.321 3.661 3.715 2.972 3.074 0.995 0.924 1.049 1.005 ... 10.920 83.60 11.370 75.780 14.990 1.236 100.0 930.0 0.0 12.52
2016-01-09 21:30:00 6.486 6.648 5.745 5.879 4.862 5.021 1.224 1.237 1.329 1.329 ... 12.640 69.43 12.760 65.760 14.290 1.398 100.0 930.0 0.0 12.52
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2017-01-01 19:00:00 16.830 16.960 15.790 15.740 15.260 15.190 2.109 2.121 2.213 2.158 ... 5.864 275.20 0.000 24.220 7.789 0.246 100.0 975.0 0.0 13.07
2017-01-01 19:10:00 15.070 15.210 13.880 13.870 12.780 12.790 1.345 1.312 1.723 1.713 ... 4.644 275.20 0.000 27.490 5.928 -0.097 100.0 975.0 0.0 13.07
2017-01-01 19:20:00 13.530 13.640 12.710 12.680 11.840 11.920 1.327 1.272 1.428 1.378 ... 4.862 275.20 0.000 27.340 5.738 0.003 100.0 976.0 0.0 13.07
2017-01-01 19:30:00 12.600 12.710 11.800 11.820 10.760 10.850 1.125 1.076 1.192 1.185 ... 3.664 275.20 0.000 26.710 5.446 0.124 100.0 976.0 0.0 13.06
2017-01-01 19:40:00 11.030 11.150 10.310 10.280 9.450 9.490 1.008 0.970 1.067 1.014 ... 4.025 275.20 0.000 27.130 6.349 0.225 100.0 976.0 0.0 13.06
2017-01-01 19:50:00 10.970 11.020 10.240 10.140 9.640 9.510 0.948 0.885 1.090 1.073 ... 4.460 275.20 0.000 24.730 6.135 0.398 100.0 976.0 0.0 13.06
2017-01-01 20:00:00 9.220 9.250 8.590 8.480 8.210 7.898 1.301 1.259 1.326 1.288 ... 6.344 275.20 0.000 16.530 8.410 0.408 100.0 976.0 0.0 13.05
2017-01-01 20:10:00 9.690 9.710 8.730 8.660 8.060 8.100 1.108 1.063 1.034 0.977 ... 8.260 275.20 0.000 17.780 10.360 0.427 100.0 976.0 0.1 13.05
2017-01-01 20:20:00 9.940 10.010 9.240 9.180 8.870 8.930 1.152 1.089 1.303 1.245 ... 6.100 275.20 0.000 14.710 8.140 0.458 100.0 976.0 0.0 13.05
2017-01-01 20:30:00 10.100 10.230 9.210 9.080 8.550 8.640 1.333 1.276 1.181 1.104 ... 6.533 275.20 0.000 16.060 9.860 0.418 99.5 977.0 0.0 13.04
2017-01-01 20:40:00 10.920 11.040 10.190 9.990 9.570 9.700 1.420 1.355 1.313 1.254 ... 5.977 275.20 0.000 21.060 7.317 0.418 99.0 977.0 0.0 13.04
2017-01-01 20:50:00 12.210 12.330 11.380 11.230 10.640 10.800 1.564 1.521 1.655 1.649 ... 4.017 275.20 0.000 25.220 5.931 0.317 98.2 977.0 0.0 13.04
2017-01-01 21:00:00 11.900 12.050 11.190 11.040 10.540 10.680 0.986 0.951 0.958 0.927 ... 4.436 275.20 0.000 22.000 6.066 0.306 98.5 977.0 0.0 13.04
2017-01-01 21:10:00 12.170 12.250 11.370 11.190 10.690 10.770 1.042 0.981 1.160 1.114 ... 4.543 275.20 0.000 20.370 5.186 0.427 98.3 977.0 0.0 13.03
2017-01-01 21:20:00 12.570 12.710 11.910 11.760 11.260 11.400 1.252 1.212 1.348 1.307 ... 3.612 275.20 0.000 23.020 5.229 0.317 96.9 977.0 0.0 13.03
2017-01-01 21:30:00 13.050 13.210 12.230 12.110 11.360 11.470 1.018 0.962 1.157 1.113 ... 3.574 275.20 0.000 23.330 5.919 0.367 97.1 977.0 0.0 13.03
2017-01-01 21:40:00 11.820 11.940 10.850 10.750 9.770 9.880 1.281 1.219 1.455 1.383 ... 4.477 275.20 0.000 21.990 6.635 0.225 96.0 978.0 0.0 13.02
2017-01-01 21:50:00 11.620 11.720 10.630 10.480 9.530 9.670 1.060 1.015 1.348 1.283 ... 4.358 275.20 0.000 19.960 6.322 0.043 95.7 978.0 0.0 13.02
2017-01-01 22:00:00 10.970 11.070 10.010 9.870 8.910 9.000 0.857 0.790 0.879 0.824 ... 4.366 275.20 0.000 21.390 6.312 -0.087 95.8 978.0 0.0 13.02
2017-01-01 22:10:00 12.030 12.090 11.320 11.140 10.730 10.770 1.175 1.121 1.249 1.208 ... 3.851 275.20 0.000 21.520 5.347 0.033 95.9 978.0 0.0 13.01
2017-01-01 22:20:00 11.800 11.870 11.230 11.070 10.570 10.610 0.928 0.861 0.928 0.875 ... 3.375 275.20 0.000 21.520 5.000 -0.168 93.9 978.0 0.0 13.01
2017-01-01 22:30:00 11.400 11.490 10.820 10.640 10.170 10.200 0.818 0.774 0.709 0.656 ... 3.046 275.20 0.000 22.250 4.233 -0.159 94.2 978.0 0.0 13.01
2017-01-01 22:40:00 11.830 11.950 11.280 11.120 10.530 10.590 0.746 0.694 0.754 0.692 ... 3.629 275.20 0.000 23.010 4.384 -0.178 93.1 978.0 0.0 13.01
2017-01-01 22:50:00 11.460 11.590 11.000 10.840 10.180 10.240 0.728 0.703 0.852 0.800 ... 2.977 275.20 0.000 19.010 5.281 -0.219 93.5 978.0 0.0 13.00
2017-01-01 23:00:00 10.080 10.160 9.430 9.320 8.580 8.610 0.967 0.953 1.049 1.014 ... 4.395 275.20 0.000 12.240 9.010 -0.391 93.8 979.0 0.0 13.00
2017-01-01 23:10:00 10.050 10.130 9.220 9.110 8.070 8.100 0.726 0.683 0.762 0.721 ... 3.568 275.20 0.000 15.050 7.453 -0.512 95.5 979.0 0.0 13.00
2017-01-01 23:20:00 11.060 11.150 10.180 10.100 9.140 9.160 0.770 0.750 0.854 0.826 ... 2.853 275.20 0.000 12.760 6.748 -0.624 96.1 979.0 0.0 13.00
2017-01-01 23:30:00 10.290 10.380 9.490 9.420 8.470 8.480 0.591 0.554 0.824 0.759 ... 3.826 275.20 0.000 11.380 7.505 -0.705 96.8 979.0 0.0 13.00
2017-01-01 23:40:00 9.260 9.310 8.310 8.230 7.212 7.255 0.632 0.565 0.797 0.798 ... 6.536 275.20 0.000 9.160 8.400 -0.877 96.8 979.0 0.0 12.99
2017-01-01 23:50:00 8.420 8.450 7.486 7.338 6.611 6.610 0.795 0.753 0.834 0.880 ... 5.014 275.20 0.000 7.084 14.140 -0.887 97.1 979.0 0.0 12.99

48763 rows × 29 columns

These operations can also be performed on a specific column:

[10]:
data['Spd80mN']['2017-01-01':'2017-02-01']
[10]:
Timestamp
2017-01-01 00:00:00     5.876
2017-01-01 00:10:00     5.911
2017-01-01 00:20:00     7.004
2017-01-01 00:30:00     7.079
2017-01-01 00:40:00     6.796
2017-01-01 00:50:00     8.380
2017-01-01 01:00:00     8.910
2017-01-01 01:10:00     8.490
2017-01-01 01:20:00     7.116
2017-01-01 01:30:00     8.060
2017-01-01 01:40:00     9.150
2017-01-01 01:50:00     7.837
2017-01-01 02:00:00     6.234
2017-01-01 02:10:00     5.896
2017-01-01 02:20:00     4.897
2017-01-01 02:30:00     4.830
2017-01-01 02:40:00     4.728
2017-01-01 02:50:00     4.207
2017-01-01 03:00:00     4.315
2017-01-01 03:10:00     5.976
2017-01-01 03:20:00     6.539
2017-01-01 03:30:00     7.523
2017-01-01 03:40:00     7.904
2017-01-01 03:50:00     7.621
2017-01-01 04:00:00     7.791
2017-01-01 04:10:00     8.190
2017-01-01 04:20:00     8.200
2017-01-01 04:30:00     8.290
2017-01-01 04:40:00     8.230
2017-01-01 04:50:00     9.600
                        ...
2017-02-01 19:00:00     9.980
2017-02-01 19:10:00     7.264
2017-02-01 19:20:00     8.210
2017-02-01 19:30:00    11.040
2017-02-01 19:40:00    12.240
2017-02-01 19:50:00    13.340
2017-02-01 20:00:00    14.150
2017-02-01 20:10:00    15.540
2017-02-01 20:20:00    14.870
2017-02-01 20:30:00    15.220
2017-02-01 20:40:00    14.510
2017-02-01 20:50:00    13.570
2017-02-01 21:00:00    13.200
2017-02-01 21:10:00    12.780
2017-02-01 21:20:00    13.230
2017-02-01 21:30:00    12.160
2017-02-01 21:40:00    11.400
2017-02-01 21:50:00    11.530
2017-02-01 22:00:00    11.940
2017-02-01 22:10:00    11.850
2017-02-01 22:20:00    10.240
2017-02-01 22:30:00    11.000
2017-02-01 22:40:00    11.900
2017-02-01 22:50:00    11.160
2017-02-01 23:00:00    10.580
2017-02-01 23:10:00    11.190
2017-02-01 23:20:00    11.580
2017-02-01 23:30:00    14.320
2017-02-01 23:40:00    12.870
2017-02-01 23:50:00    13.330
Name: Spd80mN, Length: 4608, dtype: float64

These ranges can then too be used within functions, such as monthly_means().

[11]:
bw.monthly_means(data['Spd80mN']['2017-01-01':])
[11]:
../_images/tutorials_tips_on_splicing_dataframes_23_0.png

Step 3: Selecting Specific Entries

Specific entries in DataFrames and Series can be accessed both by their index and columns name, or by their position in the DataFrame or Series.

To select a specific entry by its columns name and index, i.e. the entry in the column Spd80mN at timestamp 2016-01-09 17:00:00, type:

[12]:
data['Spd80mN']['2016-01-09 17:00:00']
[12]:
7.652

To select a specific entry by its position in the DataFrame, i.e. the 3rd entry in the 1st column, use .iloc. When using Pandas, indexing starts at 0 for both columns and rows of DataFrames and Series. The index for the the 3rd entry in the 1st column would therefore be [2, 0]:

[13]:
data.iloc[2,0]
[13]:
7.652

There are many ways to slice and dice a pandas DataFrame making it a little confusing. These are just a few and are for most things all that are required.